Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The Arctic Oscillation (AO) has been observed to undergo distinct decadal structural fluctuations that significantly influence regional weather and climate. Understanding the drivers and mechanisms behind the AO’s spatial nonstationarity is critical for improving climate predictions related to the AO. Wepresent evidence that the Atlantic Multidecadal Oscillation (AMO) plays a pivotal role in modulating AO’s Pacific center in recent decades. The poleward amplified cooling associated with negative AMO enhances the north-south temperature gradient and results the strengthened westerly winds and stratospheric polar vortex (SPV) responses, which reflects more planetary waves from the North Pacific to the North Atlantic. This enhances the atmospheric coupling between these regions and leads to amore pronounced Pacific center within theAOpattern.Numerical simulations fromECHAM5 and 35 CMIP6 models further corroborate the essential role of the AMO. These findings advance our understanding of the mechanisms driving the variability of the AO pattern.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Previous studies have suggested possible connections between the decreasing Arctic sea‐ice and long‐duration (>5 days, LD) cold weather events in Eurasia and North America. Here we document the occurrences of weather regimes in winter by their durations, based on the empirical orthogonal function analyses of the daily geopotential height fields at 500 hPa (z500) for the months of November–March 1979–2019. Significant changes in the occurrence frequency and persistence of Ural ridge (UR) and weak stratospheric polar vortex (PV) were found between winters following high and low autumn sea‐ice covers (SIC) in the Barents and Kara seas. It is shown that a strengthening of the UR is accompanied with a weakening of the PV, and a weak PV favors Greenland ridge (GR). Cold spells in East Asia persist for 5 more days after an LDUR. Cold spells from Canada to the U.S. occur 2–5 days after an LD Ural trough (UT) and are associated with a z500 anomaly dipole centered over Alaska (+) and Hudson Bay (−). Cold spells in the eastern U.S. occur 1–4 days after an LDGR due to circulations resembling the Pacific‐North America pattern. Increased occurrences of UR in winter are associated with a decreased eastward propagation of synoptic waves from the North Atlantic to Japan and the North Pacific.more » « less
- 
            Abstract Extreme floods and landslides in high‐latitude watersheds have been associated with rain‐on‐snow (ROS) events. Yet, the risks of changing precipitation phases on a declining snowpack under a warming climate remain unclear. Normalizing the total annual duration of ROS with that of the seasonal snowpack, the ERA5 data (1941–2023) show that the frequency of high‐runoff ROS events is a characteristic feature of high‐latitude coastal zones, particularly over the coasts of south‐central Alaska and southern Newfoundland. Total rainfall accumulation per seasonal snowpack duration has increased across western mountain ranges, with the Olympic Mountains experiencing more than 40 mm of additional rainfall over the snowpack in the past eight decades, followed by the Sierra Nevada. These trends could drive an 8% increase in rainfall extremes (e.g., more than 10 mm for 6 hr storm with a 15‐year return period), highlighting the need for resilient flood control systems in high‐latitude coastal cities.more » « less
- 
            Abstract It is widely accepted that Arctic amplification—accelerated Arctic warming—will increasingly moderate cold air outbreaks to the mid-latitudes. Yet, an increasing number of recent studies also argue that Arctic amplification can contribute to more severe winter weather. Here we show that the temperature of cold extremes across the United States east of the Rockies, Northeast Asia and Europe have remained nearly constant over recent decades, in clear contrast to a robust Arctic warming trend. Analysis of trends in the frequency and magnitude of cold extremes is mixed across the US and Asia but with a clearer decreasing trend in occurrence across Europe, especially Southern Europe. This divergence between robust Arctic warming and no detectable trends in mid-latitude cold extremes highlights the need for a better understanding of the physical links between Arctic amplification and mid-latitude cold extremes.more » « less
- 
            Mid-latitude Northern Hemisphere extreme cold events continue to occur despite overall winter warming trends. These events have been linked to weakened stratospheric polar vortex (SPV) states. In this study, we analyze both the upper and lower polar stratosphere for links to extreme winter cold and snow in the continental US, finding two SPV variations of interest. The first features an upper-level vortex displaced toward western Canada and linked to northwestern US severe winter weather. The second features a weakened upper-level vortex displaced toward the North Atlantic and linked to central-eastern US severe winter weather. Both variations feature lower-level stretched vortices and stratospheric wave reflection. Since 2015, a northwestward shift in severe winter weather across the US is concurrent with an increase in the frequency of the westward-focused variation relative to the eastward-focused variation and a shift to more negative phases of the El Niño–Southern Oscillation.more » « lessFree, publicly-accessible full text available July 11, 2026
- 
            Abstract The exceptional atmospheric conditions that have accelerated Greenland Ice Sheet mass loss in recent decades have been repeatedly recognized as a possible dynamical response to Arctic amplification. Here, we present evidence of two potentially synergistic mechanisms linking high-latitude warming to the observed increase in Greenland blocking. Consistent with a prominent hypothesis associating Arctic amplification and persistent weather extremes, we show that the summer atmospheric circulation over the North Atlantic has become wavier and link this wavier flow to more prevalent Greenland blocking. While a concomitant decline in terrestrial snow cover has likely contributed to this mechanism by further amplifying warming at high latitudes, we also show that there is a direct stationary Rossby wave response to low spring North American snow cover that enforces an anomalous anticyclone over Greenland, thus helping to anchor the ridge over Greenland in this wavier atmospheric state.more » « less
- 
            This dataset contains output from a prescribed model experiment conducted to investigate the impact of snow cover loss over North America on summer atmospheric circulation. We utilized the National Center for Atmospheric Research’s Community Earth System Model version 2.2 to complete a 10-year control simulation. We then modified the land-surface restart files for May 1st of each year of the control period by reducing the snow cover over North America to zero. Using these modified files, we then completed a reduced snow simulation by rerunning three-month simulations from May through July for each of the ten years. This dataset contains both the 10-year control simulation as well as the May–July “no-snow” simulations for each year. More details about the experimental setup and example output can be found in the following publication: Preece, J.R., Mote, T.L., Cohen, J. et al. Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat Commun 14, 3759 (2023). https://doi.org/10.1038/s41467-023-39466-6more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
